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Bulk Metallic Glasses

Some metal alloys can
form glasses rather
than crystalline solids
when cooled rapidly.

failure plane
or shear band

The mechanical
properties of these
materials are not well
understood.
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Bulk Metallic Glasses

_ , 2500
Metallic glasses have high

yield strengths (vertical 2000 -

axis) and remain elastic for ;.: 4
large strains (horizontal 2 1600 4
axis). g Steels Glassy Alloys
S 1000 - w _ /.
However, beyond the B Titanium
elastic limit, they tend to = (Alloys
fail catastrophically.
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failure plane
or shear band

This talk will focus on
understanding how
glasses deform beyond

the elastic limit.




Bulk Metallic Glasses

How do glasses (and other non-
crystalline materials) deform and

fail? University of Queensland
Pitch Drop Experiment:
ldea: come up with continuum « Began in 1930

model (like Navier-Stokes for fluids)  « T date, 8 drops
* Glassy materials can both
Challenging problem: needs to flow and fracture!
capture both solid-like and fluid-
like behavior.
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Plastic Deformation in Glasses

Focus on plasticity in metallic glasses in this talk. Ask similar questions to the ones we

have about nonlinear elasticity:

Nonlinear Elasticity
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Strain

Stress

Nonlinear relationship between stress

and strain.
System returns to (0,0) = no permanent

deformation (elastic)

Plasticity

Z
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Strain

Stress

Nonlinear relationship between stress

and strain.
System has permanent (plastic)
deformation when stress removed



Plastic Deformation in Glasses

Focus on plasticity in metallic glasses in this talk. Ask similar questions to the ones we

have about nonlinear elasticity:

Nonlinear Elasticity
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Strain

T =X €e=[(€) X €

Capture nonlinearity by expressing
modulus as a function of strain (and
possibly other quantities)

Stress

Plasticity
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Strain
€tot = €el T Epl
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Instead, need to write strain as sum of elastic and

plastic parts. Understand how plastic strain
evolves instead of modulus

Stress




Experiments on Plasticity of Metallic Glasses

Experiments on plastic deformation of metallic glasses (Klaumuenzer et al., 2010)

Test under uniaxial
compression

Experiments done at
constant strain rate
(103 s1), measure
stress
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Note: as pointed out before, (1) high yield strength, (2)

remains linear elastic at several % strain, (3) plastic
deformation occurs beyond linear elastic limit



Amplitude [dB]

Stick-Slip Behavior During Plastic Flow
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Close-up of stick-slip motion. Red
bars are acoustic emission
measurements.

Note that between slip events,
stress-strain is linear elastic (tells
us this is plastic and not
nonlinear elastic behavior)
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Inset shows stress vs. time during slip
for various temperatures.

Note temperature dependence in how
plastic deformation occurs.



Stick-Slip Behavior During Plastic Flow

Rel. stress [MPa]

od

Slope during slip proportional to
plastic strain rate

Plastic strain rate
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log(slope) is linear in 1/T

Can we use this information to
constrain plastic strain rate?
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How Does Plastic Deformation Occur?

Plasticity is not well understood in amorphous materials like glasses.

Crystalline Material

The movement of edge dislocation through the crystal
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Plastic deformation occurs in

crystals through dislocations:
irregularities in the crystal structure

Glassy Material

No crystal structure, no easily
identifiable dislocations.

However, idea is that there are still
“soft spots” in packing where plastic
deformation occurs (a current area
of active research).



Relating “Soft Spots” to Strain Rate

Idea: amorphous material has “soft spots” where plastic deformation occurs. Like

dislocations, these are regions have relatively high potential energy and are easier to
deform
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Energy Barrier

At higher temperatures,
New plastic strain rate larger
Metastable metastable because thermal

point point

fluctuations are larger?
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Modeling Plasticity of Metallic Glasses

Simple modeling to study plasticity and stick-slip in metallic glasses:
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Modeling Plasticity of Metallic Glasses

Simple modeling to study plasticity and stick-slip in metallic glasses:

Maximum plastic strain rate
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This gives wrong scaling!
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Complicated nonlinear system (ask me

later if you want to know)
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But thermal fluctuations aren’t only source

of rearrangements.



Temperature and Stress are Both Important

But thermal fluctuations aren’t the only way to get the system to deform. Apply a stress,
material deforms, particles move, and barrier is reduced.

Reduced Energy Barrier

Metastable New So both thermal and
metastable stress effects are
point . important:

. ( (F — TV*))
Epl X €XP | — T

>
(@)
| -
o
C
L
©
e
(e
o
e
O
o

Strain

>
Shear Stress + %

Thermal Activation

<€




Modeling Plasticity of Metallic Glasses

Simple modeling to study plasticity and stick-slip in metallic glasses:

Model
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Thermal and stress effects both important.



Modeling Plasticity of Metallic Glasses

» Metallic glasses deform plastically in
compression tests, exhibit stick-slip
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* Experiments at different temperatures ©

constrain how plastic strain depends on %

temperature and stress B

O

* Further work: explore scaling for other *g

parameters: stress drop, variation with o

applied strain rate, etc.
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